Xenny had N numbers and he loved equal triplets (An equal triplet is group of 3 numbers that are equal).
He defined a K-equal-triplet as a triplet in which all 3 integers were equal to K.
Given an integer K, he wanted to find out the probability of getting a K-equal triplet, from the N numbers.
Xenny is bad at understanding floating point numbers. Help him to find the probability in terms of a fraction, reduced to its lowest terms.
Input
First line contains a single integer - T, the total number of testcases.
T testcases follow.
Each testcase consists of 2 lines:
First line contains 2 space-separated integers - N and K, which represent the total number of integers Xenny had, and the value K whose K-equal-triplet was required.
Output
For each testcase, print the probability of finding a K-equal-triplet in terms of the lowest fraction.
For example, if the answer is 4/8, you must print 1/2, which is the lowest reduced fraction of 4/8.
Constraints
1 ≤ T ≤ 50
1 ≤ N ≤ 106
1 ≤ Numbers ≤ 109
1 ≤ K ≤ 109
Note:
1) 2 testcase files are large (about 20 MB) in size. Please use fast I/O in your code.
2) Candidates need to attempt only one of the given problems
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor
Login to unlock the editorial